RESINS FOR ADHESIVES

NATURE IS OUR ORIGIN

Specialized in plant-based chemistry for more than 80 years, we have been using renewable raw materials extracted from pine trees: a priceless alternative to fossil resources.

We offer to the adhesive sector one of the widest range of tackyfiers based on Crude Sulfate Turpentine or Crude Tall Oil, by-products provided by the paper industries.

These sustainable resins are used in various end-markets such as packaging, non-wovens, woodworking, bookbinding, tapes & labels and construction.

With our two R&D and application laboratories, we are permanently committed to develop innovative resins in order to adhere to your needs.

DRT EXPRESSES THE BEST OF NATURE

TO DEVELOP INNOVATIVE PRODUCTS FOR A RESPONSIBLE CHEMISTRY

Light colored resins, low acidity
Compatibility with EVA and SBC
Relative high polarity and low molecular weight
Good thermal stability
Excellent ratio price / performance

TERPENE PHENOLIC RESINS

Low molecular weight, high polarity Good compatibility with EVA, SBC, SBR and NR Improved adhesion on specific surfaces Increased hot tack

POLYTERPENE RESINS

Excellent compatibility with SBC Very good adhesive performances in PSA formulations Low odor, no acidity High thermal stability

WATERWHITE RESINS

Modified terpene based resins
Excellent compatibility with metallocene based PE
Good thermal stability
Excellent adhesive performances
Alternative to fossil based hydrocarbon resins

ROSIN DERIVATIVES

Acid rosins stabilised by polymerisation, hydrogenation, disproportionation mainly used in solvent based adhesives

Specialty polyesters for polyurethane adhesive formulation

WATERBASED DISPERSIONS

Compatible with acrylics, NR, SBR, PCP latices
Aqueous solvent free resins
Excellent balance of adhesive and cohesive properties
Outstanding mechanical stability that enables to use them on high speed coaters

	TYPE	Softening Point	Tg (mid)	Gardner Colour	Acid Value	Mz
		°C	°C	50R/50T	mg KOH/g	
ROSIN ESTERS					Acid Value	
DERTOLINE DEG 2	Diethyleneglycol ester of rosin	37*	-7	4	20	650
GRANOLITE TEG	Triethyleneglycol ester of rosin	liquid	-26	6	10	1100
DERTOLINE G2L	Glycerol ester of TOR	87	39	1.5	6	900
DERTOLINE PLS	Pentaerythritol ester of TOR	97	50	2.5	8	1200
WESTREZ 5101 P	Pentaerythritol ester of TOR	97	50	2.5	8	1200
DERTOLINE P 105	Pentaerythritol ester of TOR	105	55	2.5	12	2500
DERTOLINE P 110	Pentaerythritol ester of TOR	110 62		4	10	3300
GRANOLITE P 118	Pentaerythritol ester of GR	118	74	5	18	3300
DERTOPOLINE G	Glycerol ester of polymerised rosin	117	70	6	14	2000
DERTOPOLINE P 125	Pentaerythritol ester of polymerised rosin	128	80	6.5	12	2800
HYDROGRAL G	Glycerol ester of hydrogenated rosin	85	39	7	9	1400
HYDROGRAL P	Pentaerythritol ester of hydrogenated rosin	97	48	8	11	1450
TERPENE PHENOLIC RESINS					Hydroxyl Value	
DERTOPHENE T	Terpene phenolic resin	95	40	4	30-50	1000
DERTOPHENE T 105	Terpene phenolic resin	105	55	4	20-60	1100
DERTOPHENE T 115	Terpene phenolic resin	120	70	5	45-65	1100
DERTOPHENE H 150	Terpene phenolic resin	118	70	5	135-150	900
POLYTERPENE RESINS					Acid Value	
DERCOLYTE LTG	Polyterpene resin	20*	-20	3	-	1000
DERCOLYTE A 115	Polyterpene resin	115	69	3	-	1650
DERCOLYTE S 115	Polyterpene resin	115	70	2	-	5500
DERCOLYTE TS 95	Modified terpene resin	95	49	< 1	-	3500
DERCOLYTE TS 105	Modified terpene resin	105	59	< 1	-	2200
WATERWILLTE REGING					A = 111/2 1 = 2	
WATERWHITE RESINS	AA PC III	110	0.0	5011	Acid Value	0050
CRYSTAZENE 110	Modified terpene resin	110	68	50 Hazen	-	2250
ROSIN DERIVATIVES					Acid Value	
GRESINOX H	Modified, uncrystallisable rosin	65		7	146	
HYDROGRAL	Hydrogenated rosin	79	39	5	163	420
POLYGRAL 95	Polymerised rosin	95		6	155	
ZINCOGRAL Z	Zinc resinate	160			5	
REAGEM 5006	Hydroxylated polyester	liquid		6	5	7000

PC: Partially compatible

I : Incompatible

^{*} Dropping Point

POLYMER COMPATIBILITY						APPLICATIONS								
SIS	SBS	SEBS	PE	EVA	SBR	ACRY	PSA	PACKAGING	BOOKBINDING	HYGIENICS	CONSTRUCTION	ASSEMBLY		
	С		I	С			✓	✓		✓	✓			
С	С	PC	ı	С	С	С	√				√			
		<u> </u>												
С	С	PC	l	С	С	С	√	√	√	√	√	✓		
С	С	PC	l	С	С	С	√	√	√ √	√				
С	C	PC PC		C	C	C	√ ✓	√ ✓	✓ ✓	√				
C	C	PC	'	C	C	C	√	✓ ✓	√					
С	C	PC	'	C	C	C	V	✓	✓ ✓					
J			<u>'</u>						<u> </u>					
							√	√				√		
				С			√	√ ·				<i>√</i>		
			'				٧	· ·				· ·		
							√				√	√		
		ith polyme												
Ines	se resins i	are mainly	/ used in s	solvent ba	ised syste	ems.	√				√	√		
С	С	С	С	С		С	✓	√	✓		√	✓		
С	С	С	С	С		С	√	✓	✓		√	✓		
С	С	С	С	С		С	✓	✓			✓			
I	I		I	С	I	С	\checkmark	✓	✓					
С	С	С	С	С	<u> </u>	l	√	√		√				
С	С	С	PC	С	l	l	√			√		√		
PC	С	PC	C	С	1	1	√ √	√ ✓		√ √		√		
С	C	C	PC	C	С	С	√ √	✓ ✓		√ √				
С	U		PC				v							
			С	С			√	√	√	√		√		
							<u> </u>		· ·	· · ·				
							√				✓	✓		
Compatibility with polymers in hot melt form is not relevant. These resins are mainly used in solvent based systems.						✓				✓	✓			
						✓				✓	✓			
71100		o manny			.sea eyett						✓	✓		
												✓		

Hot melt adhesives are solvent free adhesives used in many end-markets: packaging, tapes & labels, non-wovens, woodworking, assembly or DIY. Depending on the surfaces that must be bonded, the first criteria is the selection of the most suitable elastomer and the choice of the tackifying resin. Aromaticity, aliphaticity and molecular weight are key parameters in selecting the appropriate resin. These parameters are excellent indicators to determine the compatibity with polymers. You will discover that our wide range of resins offers numerous possibilities in the formulation of hot melt adhesives.

Circles size corresponds to molecular weight

Terpene phenolic resin
Polyterpene resin

Terpene styrenated resin

Rosin ester

Hydrocarbon resin

Waterwhite resin

DRT offers a wide range of solvent free tackifier dispersions to the adhesive industry. Based on various chemistries, our resins are compatible with many polymers and improve the adhesive performance of the formulations that can be found in different markets such as tapes & labels, construction, packaging, automotive or general assembly. Dermulsenes are particularly recommended for Pressure Sensititive Adhesives. Their unique formulations and their oustanding mechanical stability allow them to run on coaters at very high speeds.

	TYPE	Solid Content	Softening Point	рН	Viscosity	COMPATIBILITY						
		%	(base resin) °C		mPa.s, at 20°C	ACRYLICS	SBR	NR	PCP	EVA	PVA	
DERMULSENE RA 502	Rosin acid	50	63	7,5	800	С	С	I	I	С	ı	
DERMULSENE A 7510	Rosin acid	57	75	7.8	600	С	С	I	I	С	С	
DERMULSENE RE 802	Rosin ester	52	70	7,5	500	С	С	С	С	С	С	
DERMULSENE DEG	Rosin ester	50	40	8.5	200	С	С	С	ı	С	С	
DERMULSENE 222	Modified rosin ester	54	45	8.5	450	С	С	С	С	С	С	
DERMULSENE HBR 509	Modified rosin ester	53	70	8	300	С	С	С	С	С	С	
DERMULSENE TR 602	Terpene phenolic resin	55	96	8.5	800	С	С	С	С	С	С	

C: Compatible PC: Partially compatible I: Incompatible

EFFICIENT PRODUCTS


WORLDWIDE

DRT supplies markets worldwide with the most efficient resins.

Resins have become an essential element in many formulations today. As one of the pine chemistry industry leaders, we constantly adapt our products to meet the new industrial, technical and economic needs of our customers. Our technical expertise in working with raw materials allows for greater performances in the development of highly diversified products.

Our three manufacturing facilities (two in France, one in China), our logistic platforms and our strategic alliance with our US partner MWV ensure a reliable supply chain worldwide.

With this international network, we are able to deliver the best of nature to our customers everywhere.

